Search for question
Question

Find and simplify a formula for a,, the term of the given sequence. (Hint: Decide what kind of sequence it is then use information from within the section.)

4, 20, 100, 500, 2500....

The simplified formula for the term is a,-

8

X

D.O

G

Nokia

c

E

Fig: 1


Most Viewed Questions Of Sequence and Series

1. (9 points) Determine whether the sequences listed below are increasing, decreasing,or not monotonic. \text { a. }\left\{\frac{1 \cdot 3 \cdot 5 \ldots(2 n-1)}{n !}\right\} \text { b. }\left\{\frac{(-1)^{n} n^{3}}{2 n^{3}+2 n^{2}+1}\right\} \text { c. }\left\{n^{2} e^{-n}\right\}


20.2.9 Prove that \frac{h}{2 \pi i} \int_{-\infty}^{\infty} \frac{e^{-i \omega t} d \omega}{E_{0}-i \Gamma / 2-\hbar \omega}=\left\{\begin{array}{ll} \exp \left(-\frac{\Gamma t}{2 \hbar}\right) \exp \left(-i \frac{E_{0} t}{\hbar}\right), & t>0 \\ 0, & t<0 \end{array}\right. This Fourier integral appears in a variety of problems in quantum mechanics: barrier penetration, scattering, time-dependent perturbation theory, and so on.


\text { Define the sequence }\left(a_{n}\right)_{n \geq 1} \text { recursively by } a_{1}=1 \text { and } a_{n+1}=\sqrt{2+a_{n}} \text { for all } n \geq 1 \text { i. Prove that for all } n \geq 1 \text { we have } 1 \leq a_{n} \leq 2 \text { ii. Prove that }\left(a_{n}\right)_{n \geq 1} \text { is a monotonic sequence. } iii. Deduce that the sequence converges with limit 2. iv. Show that for all n > 1 we have 2-a_{n} \leq \frac{1}{(2+\sqrt{3})^{n-1}}


Instructions 1. Create your own example of an alternating series that is (conditionally) convergent, but not absolutely convergent. Your series should be different than any of those in the notes or text examples. 2. Post your infinite series on Discussion Board on Canvas. Give a brief explanation of how you created your series. There are several different approaches you might take. 3. Peer response: look at the post from at least one other classmate and critique the method used to create the series. Do you think the method should work? Alternatively, if you believe your classmate's method works, describe another way the series might have been created.


3. [3 marks] Determine whether each of the following functions from Z to Z is one-to-one. If it is not, then justify. \begin{array}{l} \text { (a) } f(n)=n-10 \\ \text { (b) } f(n)=n^{2}+3 \\ \text { (c) } f(n)=16\left[\frac{n}{7}\right\rfloor \end{array}


If the tenth term of an arithmetic sequence is 15 and the common difference is 8, find the sum of the first 20 terms. The sum of the first 20 terms of the arithmetic sequence is X


\text { 4. Let } C([-3,3]) \text { be the vector space of continuous functions } f:[-3,3] \rightarrow \mathbb{R} \text { with the norm of uniform convergence }\|f\|_{\infty}:=\max _{x \in[-3,3]}|f(x)| \text {. } \text { (i) Consider the linear mapping } L: C([-3,3]) \rightarrow \mathbb{R} \text {, } L f:=\int_{-3}^{3} x f(x) d x \text { Prove that the mapping } L: C([-3,3]) \rightarrow \mathbb{R} \text { is continuous. } \text { (ii) Consider the mapping } F: C([-3,3]) \rightarrow \mathbb{R} \text {, } F(f):=\int_{-3}^{3}|x \| f(x)| d x Why you can not use the same strategy as in part (i) to prove that F is[2 Marks]continuous?


\text { In a geometric sequence } u_{1}=125 \text { and } u_{6}=\frac{1}{25} (a) Find the value of r (the common ratio) (b) Find the largest value of n for which S. <156.22 (c) Explain why there is no value of n for which S, >160


Sequence The sequences below are either arithmetic sequences or geometric sequences. For each sequence, determine whether it is arithmetic or geometric, and write the formula for the term a, of that sequence. (a) 2,-4,8,... (b) -7,-5, -3,... Type O Arithmetic O Geometric O Arithmetic O Geometric term formula 9-0 4-0 808 0+0 0-0 0.0 X 10 $ 12 E G


OPTIONAL Let (an) be a monotone decreasing zero sequence. Show that the sequence b_{n}:=a_{1}-a_{2}+a_{3}-a_{4} \pm \cdots \pm a_{n}=\sum_{k=1}^{n}(-1)^{n+1} a_{n} is convergent.