The strain rosette used to measure failure strains at a point yielded the following ratio between
the strains in the lamina coordinate axes:
&1= n₂/₁2=0
E2
The lamina was loaded by tensile stresses and ₂.
Compare the results obtained by the maximum stress, Tsai-Hill and Tsai-Wu criteria to
determine the failure stress. Which of these criteria prescribed the safest stress combination?
&c
Eb
60°
Y
60°
30°
QU
X
45⁰
Figure 1. Typical strain gauge rosettes (eFunda.com).
(a)/nNotes:
The ratio of strains: See Table 1 for your variant.
Material: See Tables 2 and 3 for your variant.
Table 1. The strain ratio measured in the lamina at failure.
Variant 1
n
Variant 10
1.3
n
1.5
Variant 19
1.4
n
2
1.1
11
1.6
20
0.75
3
1.2
12
1.15
4
0.8
13
0.7
5
2.0
14
0.5
6
1.7
15
1.5
7
0.6
16
1.2
8
0.9
17
0.4
9
0.75
18
1.6
1/nTable 2: Material in Problem 1 (see Table 3 for properties)
Var.
1
Material 1
Var.
10
Material 1
Var.
Material
19
1
2
1
11
1
20
1
3
1
12
1
4
2
13
2
5
2
14
2
6
2
15
2
7
3
16
3
8
3
17
3
9
3
18
3/nTable 3. Composite materials for problems 1 and 2 (material number in your variant refers to the
material in Table 1.1 below)
From
Table 1.1 Typical properties of unidirectional composites
E.J. Barbero, "Introduction to Composite Materials"
Density (
Longitudinal Model E
Tven Mode GP
Inplane Shear Modulus G₁ GP
P's Radio
Longitudinal Tessile Strength F₁, [MPa]
Transverse Tensile Strength PMP
Inplane Shear Strength (MP
Longitudinal Compressive Strength F₁, [MPa]
Transverse Compressive Strength F (MP)
elaminar Shear Strength (For Fy) [MPa]
Longitudinal Tessile Strain 3, 1963
Longitudinal CTE o [10/C)
Transverse CTE [10/
Longitudinal moisture
Transserse mistare expansice P
Fiber Volume Fract V
Void Content V. []
Fiber Misalignment
Material number
E-Glass S-Class
Epoxy Epoxy
2.076
12
55
30
0
55
16
0.2
60
82-85SBASERE
0.19 0.28
10:20 1630
40
60
630
140
60
23
37
Jalalalalalalal
16
60
6.90
140
80
29
32
02
60
2
*** 982-30*****338-3822M
E-Glas Kevlar
Epery
ophtal
Polyester
1.85
113
40
40
357
24
6.5
3.53
1.380
75.8
5.5
934
13800
34.5
441
586.0
138.0
48.69
1.8
-1.0
60
0.01
02
60
4
Carbo Carbon/ Carbon Carbon
Epoxy Epoxy Epey
ASA/35-6 T80/1960-2 1551 ASAPCE
PEEK
1.58
142
10.3
7.2
0.27
1830
57
71
1096
228
1.29
-49
27
0
02
60
n
1558
19
5.14
0.3
2608
168
0.0095
0.321
151
9.0
5.6
0.3
L64
57.3
DI
1.6
138
102
5.7
0.3
2000
85
186
1360
400
150
1.45
0.5
30
61
6
2
Carbo
Polid
ASU
Avi
Note: Carbon/epoxy, Kevlar/epoxy and boron/epoxy (to a smaller extent) are used in aerospace
applications, while less expensive glass/epoxy and glass/polyester are preferred by shipbuilders
and in civil engineering.
110
83
37
63
1000
0.5
Fig: 1
Fig: 2
Fig: 3
Fig: 4